Cofactor expansion

Recall that for $a 2 \times 2$ matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, the determinant is $\operatorname{det} A=a d-b c$. We showed that A is invertible if and only if $\operatorname{det} A \neq 0$.

Our goal in this section is to define the determinant for arbitrary matrices, and get an analogous condition for invertibility.

We define the determinant inductively.
3×3 matrices
Let $A=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$. Define

$$
\begin{aligned}
& {\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
j & h & i
\end{array}\right] \quad\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right] \quad\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& =a(e i-f h)-b(d i-f g)+c(d h-e g)
\end{aligned}
$$

Ex:

$$
\begin{aligned}
\left|\begin{array}{ccc}
1 & 3 & 2 \\
-1 & 0 & 1 \\
0 & 5 & 4
\end{array}\right| & =1\left|\begin{array}{ll}
0 & 1 \\
5 & 4
\end{array}\right|-3\left|\begin{array}{cc}
-1 & 1 \\
0 & 4
\end{array}\right|+2\left|\begin{array}{cc}
-1 & 0 \\
0 & 5
\end{array}\right| \\
& =1(0-5)-3(-4-0)+2(-5-0) \\
& =-5+12-10=-3
\end{aligned}
$$

To define the determinant for $n \times n$ matrices, we heed to define cofactors:

Def: Let A be an $n \times n$ matrix, and let
$A_{i j}=(n-1) \times(n-1)$ matrix obtained from A be deleting row i, column j.

The (i, j)-cofactor of A is defined

$$
\begin{gathered}
c_{i j}(A)=(-1)^{i+j} \operatorname{det}\left(A_{i j}\right) . \\
(-1)^{i+j}=\left\{\begin{array}{ll}
1 & \text { if } i+j \text { even } \\
-1 & \text { if } i+j \text { odd } .
\end{array} \quad\left[\begin{array}{l}
+-+\cdots \\
-+\cdots+\cdots \\
+-+ \\
\vdots \\
\vdots
\end{array}\right]\right.
\end{gathered}
$$

This is called the sign of the (i, j)-position.

Def: If $A=\left[a_{i j}\right]$ is an $n \times n$ matrix, then

$$
\operatorname{det} A=a_{11} C_{11}(A)+a_{12} C_{12}(A)+\ldots+a_{1 n} C_{1 n}(A) \text {. }
$$

This is called the cofactor expansion of $\operatorname{det} A$ along wow 1 .

Ex:

$$
\begin{aligned}
\left|\begin{array}{ccc}
1 & 3 & -2 \\
5 & 0 & 6 \\
0 & 0 & 1
\end{array}\right| & \left.=(-1)^{1+1}| | \begin{array}{cc}
0 & 6 \\
0 & 1
\end{array}\left|+(-1)^{1+2} 3\right| \begin{array}{cc}
5 & 6 \\
0 & 1
\end{array}\left|+(-1)^{1+3}(-2)\right| \begin{array}{ll}
5 & 0 \\
0 & 0
\end{array} \right\rvert\, \\
& + \\
& =1.0-3 \cdot 5-2 \cdot 0=-15
\end{aligned}
$$

Thu: The determinant of a matrix can be computed by using the cofactor expansion along any now or column.

Ex: We can calculate the determinant of the above matrix along column 2:

$$
=-3 \cdot 5=-15
$$

or row 3:

$$
\left|\begin{array}{ccc}
1 & 3 & -2 \\
5 & 0 & 6 \\
0 & 0 & 1
\end{array}\right|=0-0+1\left|\begin{array}{cc}
1 & 3 \\
5 & 0
\end{array}\right|=0-15=-15
$$

One nice thing about the above theorem is that we can sometimes choose a column or row containing mostly zeros to do the cofactor expansion along.

Ex:

$$
\begin{aligned}
\left|\begin{array}{cccc}
1 & 5 & 7 & 9 \\
0 & 3 & 0 & 0 \\
-2 & 9 & 1 & 1 \\
0 & -5 & 2 & 0
\end{array}\right| & =-0+3\left|\begin{array}{ccc}
1 & 7 & 9 \\
-2 & 1 & 1 \\
0 & 2 & 0
\end{array}\right|-0+0 \\
& =3\left(0-2\left|\begin{array}{cc}
1 & 9 \\
-2 & 1
\end{array}\right|+0\right) \\
& =3(-2(1-(-18))) \\
& =3(-2(19))=3(-38)=-114
\end{aligned}
$$

The following properties also help us find the determinant of large matrices:

Properties of the determinant
Let A be an $n \times h$ matrix.
1.) If A has a row or column of zeros, then $\operatorname{det} A=O$.

$$
\left|\begin{array}{lll}
1 & 2 & 3 \\
0 & 0 & 0 \\
5 & 6 & 7
\end{array}\right|=0
$$

2.) If two distinct rows or columns of A are interchanged, the determinant of the resulting matrix is - $\operatorname{det} A . \quad\left|\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right|=-\left|\begin{array}{lll}7 & 8 & 9 \\ 4 & 5 & 6 \\ 1 & 2 & 3\end{array}\right|$
3.) If a row or column of A is multiplied by a constant u, the determinant of the resulting matrix is $u \operatorname{det}(A)$.

$$
-2\left|\begin{array}{lll}
1 & 1 & 1 \\
3 & 2 & 5 \\
7 & 0 & 1
\end{array}\right|=\left|\begin{array}{ccc}
1 & 1 & -2 \\
3 & 2 & -10 \\
7 & 0 & -2
\end{array}\right|
$$

4.) If two distinct rows or columns of A are identical, then $\operatorname{det} A=0$.

$$
\left|\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
1 & 2 & 3
\end{array}\right|=0
$$

5.) If a multiple of one vow of A is added to a different row (or if a multiple of a column is added to a different column), the deft of the resulting matrix is $\operatorname{det} A$, i.e. it doesn't affect the determinant.

$$
\left|\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right|=\left|\begin{array}{ccc}
1 & 0 & -5 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right|
$$

We can use these properties to make determinant calculations easier:

Ex: Let $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ -1 & 1 & 0 \\ 2 & 3 & -1\end{array}\right]$. What is $\operatorname{det} A$?

$$
\begin{aligned}
& \left|\begin{array}{rrr}
1 & 2 & 3 \\
-1 & 1 & 0 \\
2 & 3 & -1
\end{array}\right|=\left|\begin{array}{ccc}
3 & 2 & 3 \\
0 & 1 & 0 \\
5 & 3 & -1
\end{array}\right|=-0+1\left|\begin{array}{cc}
3 & 3 \\
5 & -1
\end{array}\right|-0=-3-15 \\
& \text { T } 7 \\
& \text { adding } \text { column } 2 \\
& \text { to column } 1 \\
& \text { along low } 2 \\
& \text { doesn't change } \\
& \text { determinant }
\end{aligned}
$$

Ex: If $\operatorname{det}\left[\begin{array}{lll}a & b & c \\ p & q & r \\ x & y & z\end{array}\right]=6$, compute $\operatorname{det} A$, where $A=\left[\begin{array}{ccc}a+x & b+y & c+z \\ 3 x & 3 y & 3 z \\ -p & -q & -r\end{array}\right]$

$$
\begin{aligned}
\operatorname{det} A & =(-1)(3) \operatorname{det}\left[\begin{array}{ccc}
a+x & b+y & c+z \\
x & y & z \\
p & q & r
\end{array}\right] \quad \begin{array}{c}
\text { (pulling ont scalar } \\
\text { multiples) }
\end{array} \\
& =-3 \operatorname{det}\left[\begin{array}{lll}
a & b & c \\
x & y & z \\
p & q & r
\end{array}\right] \quad \begin{array}{c}
\text { (subtracting row } \\
2 \text { from row } 1 \text {) }
\end{array} \\
& =(-3)(-1) \operatorname{det}\left[\begin{array}{lll}
a & b & c \\
p & q & r \\
x & y & z
\end{array}\right] \quad \begin{array}{c}
\text { (switching } \\
\text { mows } 2 \text { and }
\end{array} \\
& =(-3)(-1)(6)=18
\end{aligned}
$$

Ex: What are the determinants of elementary matrices?
Type I: switch two rows of $I=$ identity matrix

$$
\operatorname{det} E=-\operatorname{det} I=-1
$$

Type II: k times a row of I
$\operatorname{det} E=k \operatorname{det} I=k$

Type III: row i + multiple of row
$\operatorname{det} E=\operatorname{det} I=1$
Ex: Let $A=\left[\begin{array}{lll}x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x\end{array}\right]$
For which values of x is $\operatorname{det} A=0$?

$$
\begin{aligned}
\operatorname{det} A= & \left|\begin{array}{ccc}
0 & 1-x & 1-x^{2} \\
1 & x & 1 \\
1 & 1 & x
\end{array}\right|=\left|\begin{array}{ccc}
0 & 1-x & 1-x^{2} \\
0 & x-1 & 1-x \\
1 & 1 & x
\end{array}\right|=1\left|\begin{array}{cc}
1-x & 1-x^{2} \\
x-1 & 1-x
\end{array}\right| \\
& -x(\operatorname{row} 3) \\
= & (1-x)(1-x)-(x-1)\left(1-x^{2}\right) \\
= & (1-x)^{2}+(1-x)(1-x)(1+x) \\
= & (1-x)^{2}(1+(1+x)) \\
= & (1-x)^{2}(2+x)
\end{aligned}
$$

This is zero if $x=1$ or $x=-2$.

Ex:

$$
\begin{aligned}
& \operatorname{det}\left[\begin{array}{llll}
a & b & c & d \\
0 & e & f & g \\
0 & 0 & h & i \\
0 & 0 & 0 & j
\end{array}\right]=a\left|\begin{array}{lll}
e & f & g \\
0 & h & i \\
0 & 0 & j
\end{array}\right|=a e\left|\begin{array}{ll}
h & i \\
0 & j
\end{array}\right|=\operatorname{aehj} \begin{array}{l}
\text { u }
\end{array} \\
& \text { product } \\
& \text { of } \\
& \text { diagonal } \\
& \text { (zeros below diagonal) }
\end{aligned}
$$

Tum: If A is an upper triangular matrix (0 below diagonal) or a lower triangular matrix (o above diagonal), thew $\operatorname{det} A$ is the product of the entries along the diagonal.

Practice problems: 3.1: 1 cfjkm, $5 d, 6,7,13,15$

