
Cofactorexpansion

Recall that for a 2 2 matrix A Ibd the

determinant is def A ad be We showed that A
is invertible if and only if detA 1 0

Ourgoal in this section is to define the determinant
for arbitrary matrices and get an analogous condition
for invertibility

We define the determinant inductivelyum
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To define the determinant for hxn matrices we need to

define cofactors

Def let It be an h xn matrix and let

Aij n 1 x n 1 matrix obtainedfromA bedeleting Wwi columnj

il I
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The i j cofactor of A is defined
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This is called the sign of the i j position

Def If A a j is an hxh matrix then
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This is called the toxin of det A along now 1
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Them The determinant of a matrix can be computedby
using the cofactor expansion along any row or column

Ex We can calculate the determinant of the above
matrix along column 2
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or row 3
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One nice thing about the above theorem is that
we can sometimes choose a column or row containing

mostly tens to do the cofactor expansion along
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The following properties also help us find the

determinant of large matrices

pwperh.es teminant

let A be an hxh matrix

1 If A has a row or column

I o

of tens then detao

2 If two distinct rows or columns of A are

interchanged the determinant of the resulting
matrix is de1A I I II II



3 If a row or column of A is multiplied by a

constant u the determinant of the resulting
matrix is Udet A
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4 If two distinct rows or columns of A are identical then

detA O
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5 If A multiple of one row of A is added to A

different row or if a multipleof a column is

added to a different column the det of the

resulting matrix is def A i e it doesn't affect
the determinant
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We can use these properties to make determinant
calculations easier

Ex let A f what is detA
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Ex What are the determinants of elementary matrices

IypenI switch two rows of I identity matrix

det E def I I



TympedI K times a row of I

def E kdel I k
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Ex let A Y y
For which values of X is defA o
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This is Zero i f X or X 2
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called an upper of
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Them If A is an upper triangular matrix 0 below

diagonal or a lower triangular matrix 0 above

diagonal then def A is the product of the
entries along the diagonal
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